Wasserstein bounds in CLT of approximative MCE and MLE of the drift parameter for Ornstein-Uhlenbeck processes observed at high frequency

Khalifa Es-Sebaiy, Fares Alazemi, Mishari Al-Foraih

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

This paper deals with the rate of convergence for the central limit theorem of estimators of the drift coefficient, denoted θ, for the Ornstein-Uhlenbeck process X: = { Xt, t≥ 0 } observed at high frequency. We provide an approximate minimum contrast estimator and an approximate maximum likelihood estimator of θ, namely θ˜n:=1/(2n∑i=1nXti2), and θˆn:=−∑i=1nXti−1(Xti−Xti−1)/(Δn∑i=1nXti−12), respectively, where ti= iΔ n, i= 0 , 1 , … , n, Δ n→ 0. We provide Wasserstein bounds in the central limit theorem for θ˜ n and θˆ n.

Original languageEnglish
Article number62
JournalJournal of Inequalities and Applications
Volume2023
Issue number1
DOIs
StatePublished - 2023

Keywords

  • High frequency data
  • Ornstein-Uhlenbeck process
  • Parameter estimation
  • Rate of normal convergence of the estimators

Funding Agency

  • Kuwait Foundation for the Advancement of Sciences

Fingerprint

Dive into the research topics of 'Wasserstein bounds in CLT of approximative MCE and MLE of the drift parameter for Ornstein-Uhlenbeck processes observed at high frequency'. Together they form a unique fingerprint.

Cite this