TY - JOUR
T1 - Wasserstein bounds in CLT of approximative MCE and MLE of the drift parameter for Ornstein-Uhlenbeck processes observed at high frequency
AU - Es-Sebaiy, Khalifa
AU - Alazemi, Fares
AU - Al-Foraih, Mishari
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023
Y1 - 2023
N2 - This paper deals with the rate of convergence for the central limit theorem of estimators of the drift coefficient, denoted θ, for the Ornstein-Uhlenbeck process X: = { Xt, t≥ 0 } observed at high frequency. We provide an approximate minimum contrast estimator and an approximate maximum likelihood estimator of θ, namely θ˜n:=1/(2n∑i=1nXti2), and θˆn:=−∑i=1nXti−1(Xti−Xti−1)/(Δn∑i=1nXti−12), respectively, where ti= iΔ n, i= 0 , 1 , … , n, Δ n→ 0. We provide Wasserstein bounds in the central limit theorem for θ˜ n and θˆ n.
AB - This paper deals with the rate of convergence for the central limit theorem of estimators of the drift coefficient, denoted θ, for the Ornstein-Uhlenbeck process X: = { Xt, t≥ 0 } observed at high frequency. We provide an approximate minimum contrast estimator and an approximate maximum likelihood estimator of θ, namely θ˜n:=1/(2n∑i=1nXti2), and θˆn:=−∑i=1nXti−1(Xti−Xti−1)/(Δn∑i=1nXti−12), respectively, where ti= iΔ n, i= 0 , 1 , … , n, Δ n→ 0. We provide Wasserstein bounds in the central limit theorem for θ˜ n and θˆ n.
KW - High frequency data
KW - Ornstein-Uhlenbeck process
KW - Parameter estimation
KW - Rate of normal convergence of the estimators
UR - http://www.scopus.com/inward/record.url?scp=85156117463&partnerID=8YFLogxK
U2 - 10.1186/s13660-023-02976-4
DO - 10.1186/s13660-023-02976-4
M3 - Article
AN - SCOPUS:85156117463
SN - 1025-5834
VL - 2023
JO - Journal of Inequalities and Applications
JF - Journal of Inequalities and Applications
IS - 1
M1 - 62
ER -