Surface modification of date palm activated carbonaceous materials for heavy metal removal and CO2 adsorption

A. Bumajdad, P. Hasila

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

In this study, high surface area activated carbon (AC) was prepared from a local palm tree (Phoenix Dactylifera) using a variety of metal carbonates activators and finally achieved an excellent SBET of 2700 m2/g when Cs2CO3 was used as an activating agent at a temperature of 600 °C. Surface modification of AC was carried out using various nitrogen transporting agents, resulting in N-doped ACs with nitrogen content varying from 4.0 to 11.4 %, depending on the functionalizing agents and activators used. The bimodal (presence of micro- as well as meso-porosity) ACs with such excellent surface properties were studied for their CO2 uptake capacity at two different temperatures (0 and 25 °C) by isotherms recorded at pressure 1 bar and showed a remarkable uptake ability of 3.52 mmol/g (at 25 °C) and 5.6 mmol/g (at 0 °C), respectively. Also, batch experiments with variable pH, contact time, adsorbate concentrations, adsorbent dose, and temperatures were evaluated to understand the mechanism of sorption phenomena of Cr(VI) and Pb(II) achieving > 99.9 % removal capacity by the prepared ACs. Depending on the heavy metal ions being investigated, it was revealed that the pH of the solution and the amount of adsorbent had a direct impact on the total adsorption ability. Nitrogen atoms doped into the carbon frameworks were found to enhance the adsorption in the case of Pb(II) while the removal of Cr(VI) appeared to be unaffected. Maximum adsorption for Cr(VI) was observed at pH 2 and was determined to follow Freundlich isotherm while that of Pb(II) was observed at pH 7 and follows Langmuir isotherm. Best adsorption was found at an adsorbate concentration of 10 ppm and an adsorbent dose of 10 g/L. Kinetic modeling parameters showed the applicability of pseudo-second-order model perfectly.

Original languageEnglish
Article number104403
JournalArabian Journal of Chemistry
Volume16
Issue number1
DOIs
StatePublished - Jan 2023

Keywords

  • Activated carbon
  • CO uptake
  • Heavy metal adsorption
  • Nitrogen doping
  • Palm tree waste material
  • Water purification

Funding Agency

  • Kuwait Foundation for the Advancement of Sciences

Fingerprint

Dive into the research topics of 'Surface modification of date palm activated carbonaceous materials for heavy metal removal and CO2 adsorption'. Together they form a unique fingerprint.

Cite this