TY - JOUR
T1 - SOCS3 Regulates Dectin-2-Induced Inflammation in PBMCs of Diabetic Patients
AU - Haider, Mohammed J.A.
AU - Albaqsumi, Zahraa
AU - Al-Mulla, Fahd
AU - Ahmad, Rasheed
AU - Al-Rashed, Fatema
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/9
Y1 - 2022/9
N2 - The C-type lectin receptors (CLRs) Dectin-1 and Dectin-2 are involved in several innate immune responses and are expressed mainly in dendritic cells, monocytes, and macrophages. Dectin-1 activation exacerbates obesity, inflammation, and insulin resistance/type 2 diabetes (T2D). However, the role of Dectin-2 is not clear in T2D. This study aims to evaluate the expression and function of Dectin-2 in peripheral blood mononuclear cells (PBMCs) isolated from diabetic patients and non-diabetic controls. Flow-cytometry and qRT-PCR were performed to evaluate the expression of Dectin-2 in different leukocyte subpopulations isolated from T2D patients (n = 10) and matched non-diabetic controls (n = 11). The functional activity of Dectin-2 was identified in PBMCs. CRP, IL-1β, and TNF-α concentrations were determined by ELISA. siRNA transfection and Western blotting were performed to assess p-Syk and p-NF-kB expression. siRNA transfection was performed to knock down the gene of interest. Our results show that Dectin-2 expression was the highest in monocytes compared with other leukocyte subpopulations. The expression of Dectin-2 was significantly increased in the monocytes of T2D patients compared with non-diabetic controls. Dectin-2 expression positively correlated with markers of glucose homeostasis, including HOMA-IR and HbA1c. The expression of inflammatory markers was elevated in the PBMCs of T2D patients. Interestingly, SOCS3, a negative regulator of inflammation, was expressed significantly lowlier in the PBMCs of T2D patients. Moreover, SOCS3 expression was negatively correlated with Dectin-2 expression level. The further analysis of inflammatory signaling pathways showed a persistent activation of the Dectin-2-Syk-NFkB pathway that was instigated by the diminished expression of SOCS3. Dectin-2 activation failed to induce SOCS3 expression and suppress subsequent inflammatory responses in the PBMCs of diabetic patients. siRNA-mediated knockdown of SOCS3 in PBMCs displayed a similar inflammatory phenotype to diabetic PBMCs when exposed to Dectin-2 ligands. Altogether, our findings suggest that elevated Dectin-2 and its relationship with SOCS3 could be involved in the abnormal immune response observed in T2D patients.
AB - The C-type lectin receptors (CLRs) Dectin-1 and Dectin-2 are involved in several innate immune responses and are expressed mainly in dendritic cells, monocytes, and macrophages. Dectin-1 activation exacerbates obesity, inflammation, and insulin resistance/type 2 diabetes (T2D). However, the role of Dectin-2 is not clear in T2D. This study aims to evaluate the expression and function of Dectin-2 in peripheral blood mononuclear cells (PBMCs) isolated from diabetic patients and non-diabetic controls. Flow-cytometry and qRT-PCR were performed to evaluate the expression of Dectin-2 in different leukocyte subpopulations isolated from T2D patients (n = 10) and matched non-diabetic controls (n = 11). The functional activity of Dectin-2 was identified in PBMCs. CRP, IL-1β, and TNF-α concentrations were determined by ELISA. siRNA transfection and Western blotting were performed to assess p-Syk and p-NF-kB expression. siRNA transfection was performed to knock down the gene of interest. Our results show that Dectin-2 expression was the highest in monocytes compared with other leukocyte subpopulations. The expression of Dectin-2 was significantly increased in the monocytes of T2D patients compared with non-diabetic controls. Dectin-2 expression positively correlated with markers of glucose homeostasis, including HOMA-IR and HbA1c. The expression of inflammatory markers was elevated in the PBMCs of T2D patients. Interestingly, SOCS3, a negative regulator of inflammation, was expressed significantly lowlier in the PBMCs of T2D patients. Moreover, SOCS3 expression was negatively correlated with Dectin-2 expression level. The further analysis of inflammatory signaling pathways showed a persistent activation of the Dectin-2-Syk-NFkB pathway that was instigated by the diminished expression of SOCS3. Dectin-2 activation failed to induce SOCS3 expression and suppress subsequent inflammatory responses in the PBMCs of diabetic patients. siRNA-mediated knockdown of SOCS3 in PBMCs displayed a similar inflammatory phenotype to diabetic PBMCs when exposed to Dectin-2 ligands. Altogether, our findings suggest that elevated Dectin-2 and its relationship with SOCS3 could be involved in the abnormal immune response observed in T2D patients.
KW - Candida albicans
KW - Dectin-2
KW - inflammation
KW - PBMC
KW - SOCS3
KW - T2D
UR - http://www.scopus.com/inward/record.url?scp=85137542988&partnerID=8YFLogxK
U2 - 10.3390/cells11172670
DO - 10.3390/cells11172670
M3 - Article
C2 - 36078084
AN - SCOPUS:85137542988
SN - 2073-4409
VL - 11
JO - Cells
JF - Cells
IS - 17
M1 - 2670
ER -