TY - JOUR
T1 - Resource allocation for downlink non-orthogonal multiple access in joint transmission coordinated multi-point networks
AU - Awad, Mohamad Khattar
AU - Baidas, Mohammed W.
AU - El-Amine, Ahmad A.
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/5/1
Y1 - 2021/5/1
N2 - Joint transmission coordinated multi-point (JT-CoMP) and non-orthogonal multiple access (NOMA) are key enabling technologies of 5G ubiquitous broadband infrastructures. These technologies are jointly expected to exploit multi-cell and non-orthogonal resource transmissions; thus, conventional resource allocation schemes that only consider either one of them fail to efficiently exploit resources of 5G networks. In this paper, we bridge this gap by proposing a practical and comprehensive joint sub-carrier assignment and power allocation scheme for network sum-rate maximization in JT-CoMP-enabled NOMA networks. We formulate the problem as a mixed integer non-linear programming (MINLP) problem, which is NP-hard. The problem is decoupled into two sub-problems, where the sub-carrier assignment is modeled as a two-sided many-to-many matching game and the power allocation is formulated as a difference of convex (DC) programming problem. The matching algorithm is proved to converge to a two-sided exchange stable matching. Furthermore, the solution computed by the proposed scheme is verified against a baseline solution computed by a commercial optimization package, and has been shown to achieve 91.38% of the baseline solution for JT-CoMP-NOMA networks. Simulation results illustrate that the proposed scheme enhances cell-edge users’ achievable rates by 0.1−27.7% in JT-CoMP-NOMA over conventional NOMA.
AB - Joint transmission coordinated multi-point (JT-CoMP) and non-orthogonal multiple access (NOMA) are key enabling technologies of 5G ubiquitous broadband infrastructures. These technologies are jointly expected to exploit multi-cell and non-orthogonal resource transmissions; thus, conventional resource allocation schemes that only consider either one of them fail to efficiently exploit resources of 5G networks. In this paper, we bridge this gap by proposing a practical and comprehensive joint sub-carrier assignment and power allocation scheme for network sum-rate maximization in JT-CoMP-enabled NOMA networks. We formulate the problem as a mixed integer non-linear programming (MINLP) problem, which is NP-hard. The problem is decoupled into two sub-problems, where the sub-carrier assignment is modeled as a two-sided many-to-many matching game and the power allocation is formulated as a difference of convex (DC) programming problem. The matching algorithm is proved to converge to a two-sided exchange stable matching. Furthermore, the solution computed by the proposed scheme is verified against a baseline solution computed by a commercial optimization package, and has been shown to achieve 91.38% of the baseline solution for JT-CoMP-NOMA networks. Simulation results illustrate that the proposed scheme enhances cell-edge users’ achievable rates by 0.1−27.7% in JT-CoMP-NOMA over conventional NOMA.
UR - http://www.scopus.com/inward/record.url?scp=85104108094&partnerID=8YFLogxK
U2 - 10.1016/j.comcom.2021.03.025
DO - 10.1016/j.comcom.2021.03.025
M3 - Article
AN - SCOPUS:85104108094
SN - 0140-3664
VL - 173
SP - 134
EP - 149
JO - Computer Communications
JF - Computer Communications
ER -