TY - JOUR
T1 - Na-Influenced Bulk and Surface Properties of the So-Called Iota(ι)-Alumina
T2 - Spectroscopy and Microscopy Studies
AU - Bumajdad, Ali
AU - Nahar, Shamsun
AU - Zaki, Mohamed I.
N1 - Publisher Copyright:
© Copyright © 2021 Bumajdad, Nahar and Zaki.
PY - 2021/2/22
Y1 - 2021/2/22
N2 - The test alumina (the so-called ι-Al2O3) was thermally recovered at 1,100°C from chitosan-AlOx hybrid films and found to contain Na and Ca impurity ions inherited from the parent chitosan. Two different modifications of pure alumina, namely, γ- and α-Al2O3, were adopted as control samples. The test and control aluminas were examined for 1) the bulk elemental constitution by atomic absorption spectroscopy (AAS), 2) the surface chemical composition by X-ray photoelectron spectroscopy (XPS), 3) the bulk phase composition by X-ray powder diffractometry (XRD), ex-situ Fourier-transform infrared spectroscopy (IR), and Laser Raman (LRa) spectroscopy, 4) the surface area, topography, and morphology by N2 sorptiometry, and atomic force (AFM) and scanning electron microscopy (SEM), 5) the surface adsorptive interactions with pyridine and 2-propanol gas-phase molecules by in-situ IR spectroscopy of the adsorbed species, and 6) the surface catalytic interactions with 2-propanol gas-phase molecules by in-situ IR spectroscopy of the gas phase. Results obtained could clearly show that the test alumina (ι-Al2O3) is only hypothetically pure alumina since in reality its bulk structure is majored by mullite-type Na-aluminate (Na0.67Al6O9.33/NaAlO2) and minored by Na-β-alumina (Na1.71Al11O17) and β-alumina (NaAl11O17). Consistently, observed Na-influenced modifications of the surface chemistry, topology, and morphology, as well as adsorptive and catalytic interactions with pyridine and 2-propanol gas-phase molecules, showed significant deviations from those exhibited by the control pure aluminas (γ- and α-Al2O3).
AB - The test alumina (the so-called ι-Al2O3) was thermally recovered at 1,100°C from chitosan-AlOx hybrid films and found to contain Na and Ca impurity ions inherited from the parent chitosan. Two different modifications of pure alumina, namely, γ- and α-Al2O3, were adopted as control samples. The test and control aluminas were examined for 1) the bulk elemental constitution by atomic absorption spectroscopy (AAS), 2) the surface chemical composition by X-ray photoelectron spectroscopy (XPS), 3) the bulk phase composition by X-ray powder diffractometry (XRD), ex-situ Fourier-transform infrared spectroscopy (IR), and Laser Raman (LRa) spectroscopy, 4) the surface area, topography, and morphology by N2 sorptiometry, and atomic force (AFM) and scanning electron microscopy (SEM), 5) the surface adsorptive interactions with pyridine and 2-propanol gas-phase molecules by in-situ IR spectroscopy of the adsorbed species, and 6) the surface catalytic interactions with 2-propanol gas-phase molecules by in-situ IR spectroscopy of the gas phase. Results obtained could clearly show that the test alumina (ι-Al2O3) is only hypothetically pure alumina since in reality its bulk structure is majored by mullite-type Na-aluminate (Na0.67Al6O9.33/NaAlO2) and minored by Na-β-alumina (Na1.71Al11O17) and β-alumina (NaAl11O17). Consistently, observed Na-influenced modifications of the surface chemistry, topology, and morphology, as well as adsorptive and catalytic interactions with pyridine and 2-propanol gas-phase molecules, showed significant deviations from those exhibited by the control pure aluminas (γ- and α-Al2O3).
KW - Na-influences
KW - acid-base catalytic activity
KW - adsorptive interactivity
KW - bulk characterization
KW - iota-alumina
KW - surface characterization
UR - http://www.scopus.com/inward/record.url?scp=85102256885&partnerID=8YFLogxK
U2 - 10.3389/fchem.2021.633877
DO - 10.3389/fchem.2021.633877
M3 - Article
AN - SCOPUS:85102256885
SN - 2296-2646
VL - 9
JO - Frontiers in Chemistry
JF - Frontiers in Chemistry
M1 - 633877
ER -