TY - JOUR
T1 - Metagenomic analysis of rhizosphere microflora of oil-contaminated soil planted with barley and alfalfa
AU - Kumar, Vinod
AU - AlMomin, Sabah
AU - Al-Aqeel, Hamed
AU - Al-Salameen, Fadila
AU - Nair, Sindhu
AU - Shajan, Anisha
N1 - Publisher Copyright:
© 2018 Kumar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2018/8
Y1 - 2018/8
N2 - The role of rhizosphere microbial communities in the degradation of hydrocarbons remains poorly understood and is a field of active study. We used high throughput sequencing to explore the rhizosphere microbial diversity in the alfalfa and barley planted oil contaminated soil samples. The analysis of 16s rRNA sequences showed Proteobacteria to be the most enriched (45.9%) followed by Bacteriodetes (21.4%) and Actinobacteria (10.4%) phyla. The results also indicated differences in the microbial diversity among the oil contaminated planted soil samples. The oil contaminated planted soil samples showed a higher richness in the microbial flora when compared to that of untreated samples, as indicated by the Chao1 indices. However, the trend was different for the diversity measure, where oil contaminated barley planted soil samples showed slightly lower diversity indices. While the clustering of soil samples grouped the oil contaminated samples within and across the plant types, the clean sandy soil samples formed a separate group. The oil contaminated rhizosphere soil showed an enrichment of known oil-degrading genera, such as Alcanivorax and Aequorivita, later being specifically enriched in the contaminated soil samples planted with barley. Overall, we found a few well known oil-degrading bacterial groups to be enriched in the oil contaminated planted soil samples compared to the untreated samples. Further, phyla such as Thermi and Gemmatimonadetes showed an enrichment in the oil contaminated soil samples, indicating their potential role in hydrocarbon degradation. The findings of the current study will be useful in understanding the rhizosphere microflora responsible for oil degradation and thus can help in designing appropriate phytoremediation strategies for oil contaminated lands.
AB - The role of rhizosphere microbial communities in the degradation of hydrocarbons remains poorly understood and is a field of active study. We used high throughput sequencing to explore the rhizosphere microbial diversity in the alfalfa and barley planted oil contaminated soil samples. The analysis of 16s rRNA sequences showed Proteobacteria to be the most enriched (45.9%) followed by Bacteriodetes (21.4%) and Actinobacteria (10.4%) phyla. The results also indicated differences in the microbial diversity among the oil contaminated planted soil samples. The oil contaminated planted soil samples showed a higher richness in the microbial flora when compared to that of untreated samples, as indicated by the Chao1 indices. However, the trend was different for the diversity measure, where oil contaminated barley planted soil samples showed slightly lower diversity indices. While the clustering of soil samples grouped the oil contaminated samples within and across the plant types, the clean sandy soil samples formed a separate group. The oil contaminated rhizosphere soil showed an enrichment of known oil-degrading genera, such as Alcanivorax and Aequorivita, later being specifically enriched in the contaminated soil samples planted with barley. Overall, we found a few well known oil-degrading bacterial groups to be enriched in the oil contaminated planted soil samples compared to the untreated samples. Further, phyla such as Thermi and Gemmatimonadetes showed an enrichment in the oil contaminated soil samples, indicating their potential role in hydrocarbon degradation. The findings of the current study will be useful in understanding the rhizosphere microflora responsible for oil degradation and thus can help in designing appropriate phytoremediation strategies for oil contaminated lands.
UR - http://www.scopus.com/inward/record.url?scp=85052313982&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0202127
DO - 10.1371/journal.pone.0202127
M3 - Article
C2 - 30092049
AN - SCOPUS:85052313982
VL - 13
JO - PLoS ONE
JF - PLoS ONE
IS - 8
M1 - e0202127
ER -