TY - JOUR
T1 - Creating Optimal Pockets in a Clathrochelate-Based Metal-Organic Framework for Gas Adsorption and Separation
T2 - Experimental and Computational Studies
AU - Gong, Wei
AU - Xie, Yi
AU - Pham, Thang Duc
AU - Shetty, Suchetha
AU - Son, Florencia A.
AU - Idrees, Karam B.
AU - Chen, Zhijie
AU - Xie, Haomiao
AU - Liu, Yan
AU - Snurr, Randall Q.
AU - Chen, Banglin
AU - Alameddine, Bassam
AU - Cui, Yong
AU - Farha, Omar K.
N1 - Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/3/2
Y1 - 2022/3/2
N2 - The rational design and synthesis of robust metal-organic frameworks (MOFs) based on novel organic building blocks are fundamental aspects of reticular chemistry. Beyond simply fabricating new organic linkers, however, it is important to elucidate structure-property relationships at the molecular level to develop high-performing materials. In this work, we successfully targeted a highly porous and robust cage-type MOF (NU-200) with an nbo-derived fof topology through the deliberate assembly of a cyclohexane-functionalized iron(II)-clathrochelate-based meta-benzenedicarboxylate linker with a Cu2(CO2)4secondary building unit (SBU). NU-200 exhibited an outstanding adsorption capacity of xenon and a high ideal adsorbed solution theory (IAST) predicted selectivity for a 20/80 v/v mixture of xenon (Xe)/krypton (Kr) at 298 K and 1.0 bar. Our extensive computational simulations with grand canonical Monte Carlo (GCMC) and density functional theory (DFT) on NU-200 indicated that the MOF's hierarchical bowl-shaped nanopockets surrounded by custom-designed cyclohexyl groups─instead of the conventionally believed open metal sites (OMSs)─played a crucial role in reinforcing Xe-binding affinity. The optimally sized pockets firmly trapped Xe through numerous supramolecular interactions including Xe···H, Xe···O, and Xe···π. Additionally, we validated the unique pocket confinement effect by experimentally and computationally employing the similarly sized probe, sulfur dioxide (SO2), which provided significant insights into the molecular underpinnings of the high uptake of SO2(11.7 mmol g-1), especially at a low pressure of 0.1 bar (8.5 mmol g-1). This work therefore can facilitate the judicious design of organic building blocks, producing MOFs featuring tailor-made pockets to boost gas adsorption and separation performances.
AB - The rational design and synthesis of robust metal-organic frameworks (MOFs) based on novel organic building blocks are fundamental aspects of reticular chemistry. Beyond simply fabricating new organic linkers, however, it is important to elucidate structure-property relationships at the molecular level to develop high-performing materials. In this work, we successfully targeted a highly porous and robust cage-type MOF (NU-200) with an nbo-derived fof topology through the deliberate assembly of a cyclohexane-functionalized iron(II)-clathrochelate-based meta-benzenedicarboxylate linker with a Cu2(CO2)4secondary building unit (SBU). NU-200 exhibited an outstanding adsorption capacity of xenon and a high ideal adsorbed solution theory (IAST) predicted selectivity for a 20/80 v/v mixture of xenon (Xe)/krypton (Kr) at 298 K and 1.0 bar. Our extensive computational simulations with grand canonical Monte Carlo (GCMC) and density functional theory (DFT) on NU-200 indicated that the MOF's hierarchical bowl-shaped nanopockets surrounded by custom-designed cyclohexyl groups─instead of the conventionally believed open metal sites (OMSs)─played a crucial role in reinforcing Xe-binding affinity. The optimally sized pockets firmly trapped Xe through numerous supramolecular interactions including Xe···H, Xe···O, and Xe···π. Additionally, we validated the unique pocket confinement effect by experimentally and computationally employing the similarly sized probe, sulfur dioxide (SO2), which provided significant insights into the molecular underpinnings of the high uptake of SO2(11.7 mmol g-1), especially at a low pressure of 0.1 bar (8.5 mmol g-1). This work therefore can facilitate the judicious design of organic building blocks, producing MOFs featuring tailor-made pockets to boost gas adsorption and separation performances.
UR - http://www.scopus.com/inward/record.url?scp=85125424740&partnerID=8YFLogxK
U2 - 10.1021/jacs.2c00011
DO - 10.1021/jacs.2c00011
M3 - Article
C2 - 35179374
AN - SCOPUS:85125424740
SN - 0002-7863
VL - 144
SP - 3737
EP - 3745
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 8
ER -