TY - JOUR
T1 - Comparative proteomic analysis identifies EphA2 as a specific cell surface marker for wharton’s jelly-derived mesenchymal stem cells
AU - Madhoun, Ashraf Al
AU - Marafie, Sulaiman K.
AU - Haddad, Dania
AU - Melhem, Motasem
AU - Abu-Farha, Mohamed
AU - Ali, Hamad
AU - Sindhu, Sardar
AU - Atari, Maher
AU - Al-Mulla, Fahd
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/9/1
Y1 - 2020/9/1
N2 - Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) are a valuable tool in stem cell research due to their high proliferation rate, multi-lineage differentiation potential, and immunotolerance properties. However, fibroblast impurity during WJ-MSCs isolation is unavoidable because of morphological similarities and shared surface markers. Here, a proteomic approach was employed to identify specific proteins differentially expressed by WJ-MSCs in comparison to those by neonatal foreskin and adult skin fibroblasts (NFFs and ASFs, respectively). Mass spectrometry analysis identified 454 proteins with a transmembrane domain. These proteins were then compared across the different cell-lines and categorized based on their cellular localizations, biological processes, and molecular functions. The expression patterns of a selected set of proteins were further confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting, and immunofluorescence assays. As anticipated, most of the studied proteins had common expression patterns. However, EphA2, SLC25A4, and SOD2 were predominantly expressed by WJ-MSCs, while CDH2 and Talin2 were specific to NFFs and ASFs, respectively. Here, EphA2 was established as a potential surface-specific marker to distinguish WJ-MSCs from fibroblasts and for prospective use to prepare pure primary cultures of WJ-MSCs. Additionally, CDH2 could be used for a negative-selection isolation/depletion method to remove neonatal fibroblasts contaminating preparations of WJ-MSCs.
AB - Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) are a valuable tool in stem cell research due to their high proliferation rate, multi-lineage differentiation potential, and immunotolerance properties. However, fibroblast impurity during WJ-MSCs isolation is unavoidable because of morphological similarities and shared surface markers. Here, a proteomic approach was employed to identify specific proteins differentially expressed by WJ-MSCs in comparison to those by neonatal foreskin and adult skin fibroblasts (NFFs and ASFs, respectively). Mass spectrometry analysis identified 454 proteins with a transmembrane domain. These proteins were then compared across the different cell-lines and categorized based on their cellular localizations, biological processes, and molecular functions. The expression patterns of a selected set of proteins were further confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting, and immunofluorescence assays. As anticipated, most of the studied proteins had common expression patterns. However, EphA2, SLC25A4, and SOD2 were predominantly expressed by WJ-MSCs, while CDH2 and Talin2 were specific to NFFs and ASFs, respectively. Here, EphA2 was established as a potential surface-specific marker to distinguish WJ-MSCs from fibroblasts and for prospective use to prepare pure primary cultures of WJ-MSCs. Additionally, CDH2 could be used for a negative-selection isolation/depletion method to remove neonatal fibroblasts contaminating preparations of WJ-MSCs.
KW - Adult skin fibroblasts
KW - Mass spectrometry
KW - Neonate foreskin fibroblasts
KW - Proteomic analysis
KW - Wharton’s jelly-derived Mesenchymal Stem Cells
UR - http://www.scopus.com/inward/record.url?scp=85090725917&partnerID=8YFLogxK
U2 - 10.3390/ijms21176437
DO - 10.3390/ijms21176437
M3 - Article
C2 - 32899389
AN - SCOPUS:85090725917
SN - 1661-6596
VL - 21
SP - 1
EP - 21
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 17
M1 - 6437
ER -