Modeling Polymer Flow in Porous Media

Project: General ResearchGeneral Research 1994

Project Details

Abstract Arabic

استهدف البحث تطوير نموذج رياضي يحاكي سيلان مواد البوليمير في الأوساط المسامية. وقد استخدم البحث تجارب سيلان المواد التي لا تخضع لتصنيف موائع نيوتن في كل من الصخور اليابسة (Consolidated) ونماذج الصخور غير اليابسة (Unconsolidated). وذلك بغرض دراسة العوامل البتروفيزيائية وخواص البوليمير اللزوجية والمطاطية على سيلان مواد البوليمير المستخدمة في العديد من الطرق المحسنة للإنتاج في حقول النفط.

Abstract English

Steady-state flow experimental data have been analysed for two commonly used polymers representing two generic classes: polysaccharides (xanflood), and partially hydrolyzed polyacrylamides (pusher-700) flowing inside bead packs and Berea sandstone. Oscillatory flow measurements have been used to compute the polymer solution’s longest relaxation time (f1), which is referred to as the characteristic relaxation time in this paper. Steady-state flow experimental data for the two polymers combined with measured polymer viscous properties have been converted to average shear stress-shear rate data inside porous media. An average power-law exponent (n) is therefore obtained for the polymer flow inside the porous medium. Using f1 and n rock permeability (k) and porosity () and fluid flow velocity (u), a viscoelasticity number (Nv) is calculated, and found to strongly correlate with the pressure gradient inside porous media. This correlation is the basis for defining a viscoelastic model for polymer flow, analogous to Darcy’s law. The proposed model asserts a non-linear relationship between fluid velocity and pressure gradient. It accounts for polymer elasticity, and for pore geometry changes due to molecular adsorption and mechanical entrapment.
StatusFinished
Effective start/end date1/05/9625/06/00

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.