Project Details
Abstract Arabic
الننوبلازمونيكس يشكل جزءا رئيسيا من ميدان الننوفونوتيكس، الذي يستكشف كيف يمكن أن تقتصر على المحاولات الكهرومغناطيسية على أمر من أو أصغر من الطول الموجي. بدأت في عام 1902 من قبل وود مع اكتشاف الحالات الشاذة، قد جنبت هذه الظاهرة اهتمام كبير خلال القرن الماضي. التطبيقات الحالية تتعلق، على سبيل المثال، إلى الاستثمار الحيوي من جزيئات الحليلة يمكن أن توفر وسيلة حساسة للغاية للكشف عن وجودها خلال التحول في الوتيرة الرنانة. احتمال آخر هو تأثير أكبر حتى مع الحبس من الضوء في شبة المناطق الطول الموجي يمكن أن توفر بوضوح مكاسب كبيرة في مجموعة متنوعة واسعة من المجالات (مثل الاتصالات السلكية واللاسلكية، المجهري) ونحن نعتقد أنه يمكنك استخدامها بشكل كبير لتحسين عملية التصميم للمواد البصرية ذات البنية ا لنانومترية. يتقرح تطوير أجهزة محاكاة جديدة سريعة ودقيقة يمكن استخدامها في الوقت الحقيقي للتصميم. يمكن استخدام هذه المتابعة إلا عندما تقدمت عمليات التصنيع إلى مستوى يسمح لسيطرة دقيقة جدا من أنماط معدنية. وهذا بدوره، يبرر استخدام مخططات الدقيقة، سيحل محل الممارسات الحالية التي لا تزال تعتمد إلى حد كبير على أساليب قديمة وغير دقيقة (مثل مجال الفروق المحدودة للوقت "أي وقت مضى الشعبية"). على الرغم من أن هذه البدائل قد حرت متابعتها (العناصر المحددة والأساليب المعادلة) والتي تقتصر كل واحدة من هذه في الدقة و/أو الكفاءة، مما يجعلها ذات استخدام محدود في التصميم الظاهري.
Abstract English
"Nanoplasmonics forms a major part of the field of nanophotonics, which explores how electromagnetic
fields can be confined over dimensions on the order of or smaller than the wavelength. Initiated in 1902
by R.W. Wood with the discovery of grating anomalies, this phenomenon has attracted significant attention over the last century. Current applications relate, for instance, to bio-sensing wherein the
binding of analyte molecules to a properly treated metallic arrangement can provide a very sensitive
means to detect their presence through a shift in the resonant (plasmonic) frequency. The potential
for further impact is even greater as the confinement of light in sub-wavelength regions can clearly
provide significant gains in a wide variety of areas (e.g. telecommunications, microscopy). We believe
that state-of-the-art computational thinking can be used to dramatically improve the design process
for nanostructured optical materials. The Principal Investigator (PI) proposes to develop new fast and
accurate simulators that can be used for real-time design. The use of such can only proceed when
fabrication processes have advanced to the level of allowing for very fine control of metallic patterns.
This, in turn, justifies the use of accurate schemes that, as the PI expects, will replace current practices
which still rely largely on old-fashioned and inaccurate techniques (such as the ever-popular «FDTD»).
Although alternatives to these have been pursued (finite elements, integral equation methods), each
one of these is limited in accuracy and/or efficiency, rendering them of limited use in virtual design. On
the other hand, the schemes we propose are based on high-order (spectral) treatment of the (integralequation formulation) mathematical models and they can thus deliver highly accurate solutions in
significantly lower computational times. We feel that careful structuring of the necessary computations
is critical to achieving this aim."
fields can be confined over dimensions on the order of or smaller than the wavelength. Initiated in 1902
by R.W. Wood with the discovery of grating anomalies, this phenomenon has attracted significant attention over the last century. Current applications relate, for instance, to bio-sensing wherein the
binding of analyte molecules to a properly treated metallic arrangement can provide a very sensitive
means to detect their presence through a shift in the resonant (plasmonic) frequency. The potential
for further impact is even greater as the confinement of light in sub-wavelength regions can clearly
provide significant gains in a wide variety of areas (e.g. telecommunications, microscopy). We believe
that state-of-the-art computational thinking can be used to dramatically improve the design process
for nanostructured optical materials. The Principal Investigator (PI) proposes to develop new fast and
accurate simulators that can be used for real-time design. The use of such can only proceed when
fabrication processes have advanced to the level of allowing for very fine control of metallic patterns.
This, in turn, justifies the use of accurate schemes that, as the PI expects, will replace current practices
which still rely largely on old-fashioned and inaccurate techniques (such as the ever-popular «FDTD»).
Although alternatives to these have been pursued (finite elements, integral equation methods), each
one of these is limited in accuracy and/or efficiency, rendering them of limited use in virtual design. On
the other hand, the schemes we propose are based on high-order (spectral) treatment of the (integralequation formulation) mathematical models and they can thus deliver highly accurate solutions in
significantly lower computational times. We feel that careful structuring of the necessary computations
is critical to achieving this aim."
Status | Finished |
---|---|
Effective start/end date | 1/10/14 → 10/11/16 |
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.